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seen to be consistent with its being attached to a site of small 
charge. 
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Nucleophilic displacements at carbon are well-known and form 
the basis of many useful synthetic reactions.' However, similar 
reactions at quaternary nitrogen proceed with difficulty2 if at all.3 

There are a few reports of nucleophilic attack by alkyl Grignard 
reagents on trivalent nitrogen compounds including 0-methyl-
hydroxylamine4 and chloramine5 (0-90% yields). Addition of 
nucleophilic reagents to unsaturated nitrogen has also been used 
as a means of synthesizing amines from organometallic com­
pounds. For example, Grignard reagents react with tosyl azide 
to form salts of tosyl triazenes which can be reduced to amines.6 

Reactions of aryl Grignards and aryllithiums with acetone oxime 
give the corresponding arylamines in yields of 12-70%.7 [0-
(p-Tolylsulfonyl)isonitroso]malononitrile reacts with malononitrile 
under basic conditions to yield salts of l,l,3,3-tetracyano-2-azo-
propenide.8 An unusual feature of this reaction is the addition 
of the nucleophile to the more electronegative atom of the C = X 
bond, but the usefulness of the method as a general synthetic route 
to amines is limited. Nucleophilic additions to the hetero atom 
of C = X bonds have been reported where the hetero atom is 
nitrogen,6"9a,b'c sulfur,10a,b or oxygen.11 In all cases yields vary 
from 30% to 80%. Other methodologies for primary arylamine 
synthesis in useful yields involve the use of methoxyamine and 
methyllithium for the conversion of aromatic organometallics to 
primary amines. The yields are promising for aryllithiums 
(55-97%) but low for phenyl Grignard (37%).12a'b The reaction 
of aromatic organometallics with azidomethyl phenyl sulfide also 
yields the primary arylamine (50-98%). Present drawbacks of 
this elegant and valuable approach include the difficulty in pre­
paring the starting material and the unpleasant aroma of phenyl 
thiol.13a'b'c Primary arylamines have also been obtained in 69-79% 
yield from the reaction of (trimethylsilyl)methyl azide (TMSMA) 
with aryl Grignards. Yields are poor for aryllithium reagents 
(35-41%).14 
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a Yield of product recovered after liquid chromatography. 
b Identified by elemental analysis. c Reduction product of the 
reaction of (2,3,5,6-tetramethylphenyl)magnesium bromide with 
the oxime O-tosylate. d Identified by comparison with authentic 
sample. e Identified via high-resolution mass spectrometry. 
' Yield is not optimized. 8 Yield of recrystallized product. No 
chromatographic separation. 

In the present paper, we report an efficient method for the 
amination of organometallic reagents. A novel feature of this 
approach is a "catalytic" cycle in which the amination reagent 
(hydroxylamine) is activated by oxime tosylate formation (Figure 
1). 

The starting material of the present work is easy to prepare 
(Figure 1): tetraphenylcyclopentadienone is synthetically and 
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= 25 0C (room temperature). 
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Figure 1. 

commercially available; the oxime and oxime O-tosylate are readily 
obtained by successive treatment with hydroxylamine and tosyl 
chloride. 

The reaction leading to the formation of the imine probably 
proceeds via nucleophilic addition to the heteroatom, creating a 
highly stabilized cyclopentadienyl anion. The intermediate anion 
then undergoes elimination of the tosylate. The only significant 
side reaction appears to be reduction of the imine tosylate to the 
unsubstituted imine (vide infra). One possible means of elimi­
nating this problem may be substituting a different carbanion 
stabilizing moiety for the tetraphenylcyclopentadiene system. This 
type of structural change may also prove to be an effective means 
for tailoring a specific substrate to match a particular organo-
metallic reagent. 

The present results (Table I) demonstrate that the oxime O-
tosylate of tetraphenylcyclopentadienone reacts with aryllithium 
or arylmagnesium bromide to give the corresponding imine in good 
to excellent yield. The final reaction involves the conversion of 
the imine to the oxime and arylamine and is carried out by reaction 
with excess hydroxylamine in aqueous pyridine (e.g., entry 8a, 
Table I). Significant features of this synthetic method are the 
good yields of aryl amines which are obtained, and the unusual 
mode of activating the effective aminating reagent O-tosyl-
hydroxylamine by attaching an auxilliary group (tetraphenyl-
cyclopentadienyl moiety) which then can be removed and effi­
ciently recycled through the sequence (e.g., Figure 1; entry 8b, 
Table I).19'20 

(19) Aliphatic lithium and Grignard reagents also react with the oxime 
O-tosylate of cyclopentadienone to yield the corresponding imine. Competing 
side reactions are the formation of the unsubstituted imine and double addition 
of the nucleophile on nitrogen to yield l-(dialkylamino)-2,3,4,5-tetraphenyl-
cyclopentadiene, l-(alkylamino)-2,3,4,5-tetraphenylcyclopentadiene and 1-
amino-2,3,4,5-tetraphenylcyclopentadiene. The reaction of n-BuZnBr with 
the oxime tosylate yields comparable amounts of the unsubstituted imine and 
the n-butylimine, but no double addition is observed. This suggests that oxime 
tosylates may be useful in efficient synthesis of aliphatic amines, if organo-
metallic reagents with metals less electropositive than lithium, magnesium, 
or zinc are employed and if the oxime moieties are chosen to maximize 
stabilization of carbanion intermediates (arising from nucleophilic addition 
on nitrogen) in preference to radical intermediates formed by one-electron 
transfer. Preliminary experiments with functionalized organolithiums and 
organomagnesiums (e.g., JV,JV-dialkylcarboxyamide, methoxy, a-thio) indicate 
that optimal yields of monosubstituted imines are highly dependent on the 
choice of metal, and investigation of this aspect is in progress. 
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(20) It has been found that the reaction times are much shorter when an 
excess of organometallic reagent is used, compared to stoichiometric amounts 
of oxime tosylate and organometallic (10—60 min vs. overnight). For inex­
pensive organometallics this practice is of little consequence but the experi­
mental conditions reported here may require modification when stoichiometric 
quantities are employed. Many aromatic amines are considerably more ex­
pensive than the corresponding bromides used as precursors for the organo­
metallic reagent (e.g., 9-aminophenanthrene $108/g vs. 9-bromophenanthrene, 
$l/g.; Aldrich catalog, 1984-1985; see Table I, entry 4). 
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In spite of the phenomenal progress made in the general area 
of asymmetric synthesis in recent years,1,2 comparatively little 
effort has been devoted to asymmetric olefination reactions and 
the few examples have involved substituted cycloalkanones.3,5 In 
addition to the many problems that are omnipresent in Wittig-type 
olefinations.6'7 controlling the stereochemistry of unsymmetrical 
olefins is perhaps a most sought after requirement.8,9 In this 
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